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Baroclinic Rossby Waves 
and Cyclogenesis  
 
Abstract of a landmark article on the theory of cyclogenesis  
 
By obtaining complete solutions, satisfying all relevant simultaneous differential equations and 
boundary conditions, representing small disturbances of simple states of steady baroclinic large-scale 
atmospheric motion it is shown that these simple states of motion are almost invariably unstable. An 
arbitrary disturbance (corresponding to some inhomogeneity of an actual system) may be regarded as 
analysed into “components” of a certain simple type, some of which grow exponentially with time. In 
all the cases examined there exists one particular component that grows faster than any other. It is 
shown how, by a process analogous to “natural selection”, this component becomes dominant in that 
almost any disturbance tends eventually to a definite size, structure and growthrate (and to a 
characteristic life-history after the disturbance has ceased to be “small”), which depends only on the 
broad characteristics of the initial (unperturbed) system. The characteristic disturbances (forms of 
breakdown) of certain types of initial system (approximating to those in practice) are identified as the 
ideal forms of the observed cyclone waves and long waves of middle and high latitudes. 
E.T. Eady (1949), “Long waves and cyclone waves” (Tellus, 1, 33-52) 
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9.1 Introduction 
 
The formation or genesis of cyclones (cyclogenesis) occurs most frequently in zones which 
exhibit strong low level horizontal temperature gradients. These so-called baroclinic zones 
are encountered most frequently in the winter in middle latitudes. In section 9.2 a two-level 
quasi-geostrophic model of the atmosphere is introduced, which is the minimum-complexity 
model, which permits the existence baroclinic Rossby waves, which are Rossby waves which 
have a non-constant or non-homogeneous vertical structure. Linear analysis of the stability of 
a zonal baroclinic zone, characterised by a meridional temperature gradient, in thermal wind 
balance, in this two-level model, reveals that baroclinic Rossby waves may become unstable 
and grow exponentially in time. The structure and scale of these waves is very similar to the 
cyclone waves which are observed in middle latitudes in reality. Potential vorticity, which is 
obviously also a useful concept in this context, will return into the discussion at the end of this 
chapter and in subsequent chapters. This reflects the two somewhat different viewpoints on 
mid-latitude atmospheric dynamics that presently exist side by side. 
 
 
Box 9.1 Primitive equations in pressure coordinates 
 
With the ideal gas law, p=ρRT, the hydrostatic equation, ∂p=-ρg∂z, can be written as  
 

€ 

∂Φ
∂p

= −
RT
p

 ,          (1) 

 
where the "geopotential" is 
 

€ 

Φ ≡ gz  .           (2) 
 
Integration of (1) in the vertical yields the hypsometric equation: 
 

€ 

zT ≡ z2 − z1 =
R
g

Td ln p( )
p2

p1
∫  ,        (3) 

 
The quantity, zT, is the thickness of the atmospheric layer between the pressure surfaces p2 
and p1.  
 Defining the layer mean temperature as  
 

€ 

T ≡ Td ln p( )
p2

p1
∫ d ln p( )

p2

p1
∫

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

−1

 ,        (4) 

 
we obtain 
 

€ 

zT =
R
g
T ln p1

p2
 .          (5a) 

 
Thus, the thickness of a layer bounded by isobaric surfaces is proportional to the mean 
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temperature of the layer. We can also write this equation as 
 

€ 

zT ≡ H ln p1
p2

 .          (5b) 

 
with the layer mean scale height defined as 
 

€ 

H ≡
R T
g

 .          (6) 

 
 The thermodynamic energy equation (1.195) is written in pressure coordinates as follows.  
 

€ 

∂T
∂t

+ u ∂T
∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p

+ v ∂T
∂y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p

+ω
∂T
∂p

−
αω
c p

=
J
c p

 ,      (7)
 

 
where the differentiation with respect to x and y is done at constant pressure, and where cp is 
the specific heat at constant pressure (cp-cv=R).  
 Eq. 7 is rewritten as 
 

€ 

∂T
∂t

+ u ∂T
∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p

+ v ∂T
∂y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p
− Spω =

J
c p

,        (8)
 

 
where, with the aid of eqs. 1.10b and 1.21, we have 
 

€ 

Sp ≡
RT
cpp

−
∂T
∂p

= −
T
θ
∂θ
∂p

 ,        (9) 

 
which is the static stability parameter for the isobaric system. 
 With pressure as a vertical coordinate, the horizontal components of the momentum are 
(see 1.191a,b) are 
 

€ 

du
dt

−
uv tanφ

a
= −

∂Φ
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p

+ fv + Fx ,        (10a) 

 

€ 

dv
dt

+
u2 tanφ

a
= −

∂Φ
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p
− fu + Fy  .       (10b) 

 
with 
 

€ 

d
dt

=
∂
∂t

+ u ∂
∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p

+ v ∂
∂y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p

+ω
∂
∂p

 .       (11) 

 
If applied to large scale motion systems in mid-latitudes, eqs. 10a,b are frequently simplified 
to (Box 1.6) 
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€ 

du
dt

= −
∂Φ
∂x

+ fv           (12a) 

 

€ 

dv
dt

= −
∂Φ
∂y

− fu           (12b) 

 
The continuity equation in the pressure coordinate system is (eq. 1.209) 
 

€ 

−
v tanφ
a

+
∂u
∂x

+
∂v
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p

+
∂ω
∂p

= 0 ,        (13) 

 
which, when applied to mid-latitudes, is usually simplified to 
 

€ 

∂u
∂x

+
∂v
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p

+
∂ω
∂p

= 0  .         (14) 

 
 The continuity equation (14), the hydrostatic relation (1), the thermodynamic equation (8) 
and the momentum equation (12a,b) form a closed set of equations, also referred to as the 
"primitive equations", which can be solved, given boundary conditions in space and time.  
 
 
9.2 The two level model 
 
In this section we discuss the role of the instability of thermal wind balance in accounting for 
the growth of mid-latitude cyclones.  
 The most simplified model of the atmosphere that can incorporate three-dimensional 
baroclinic processes has two discrete layers, bounded by surfaces numbered 0, 2 and 4, as 
shown in figure 9.1. The geostrophic wind (1.246), which in vector-notation is  
 

  

€ 

! v g ≡ f0
−1 ˆ k ×

! 
∇ Φ,           (9.1) 

 
and the geostrophic vorticity (1.249) can be expressed respectively as 
 

€ 

ζg =
1
f0

∂2Φ

∂x2
+
∂2Φ

∂y2
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ≡

1
f0
∇2Φ  .       (9.2) 

 
It is convenient to define a geostrophic streamfunction, ψ=Φ/f0, so that 
 

  

€ 

! v g = ˆ k ×
! 
∇ ψ,  ζg =∇2ψ  .         (9.3) 

 
Remember that 

€ 

∇2 ≡ ∇h
2.  
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FIGURE 9.1. Arrangement of variables in the vertical direction for the two-level model (from Holton, 
2004). 
 
 In terms of ψ, the quasi-geostrophic vorticity equation (1.251) becomes 
 

  

€ 

∂∇2ψ
∂t

+
! v g ⋅
! 
∇ ∇2ψ( ) + β

∂ψ
∂x

= f0
∂ω
∂p

       (9.4) 

 
Using the hydrostatic relation (eq. 1, box 9.1) and neglecting heating (J=0), the quasi-
geostrophic thermodynamic equation (1.316) can be written as  
 

  

€ 

∂
∂t

∂ψ
∂p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +
! v g ⋅
! 
∇ 
∂ψ
∂p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −

σ
f0
ω         (9.5) 

 
We now “apply” (9.35) at levels 1 and 3. To do this we must estimate the divergence term at 
these levels using finite difference approximations to the vertical derivatives: 
 

€ 

∂ω
∂p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1
≈
ω2 −ω0

δp
 ,  ∂ω

∂p
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3
≈
ω4 −ω2

δp
 .       (9.6) 

 
Here δp is the pressure interval between the levels 0 and 2, and 2 and 4. Subscripts indicate 
the vertical level for each dependent variable. 
 The resulting vorticity equations are 
 

  

€ 

∂∇2ψ1
∂t

+
! v 1⋅
! 
∇ ∇2ψ1( ) + β

∂ψ1
∂x

=
f0
δp
ω2  ,       (9.7) 

 

  

€ 

∂∇2ψ3
∂t

+
! v 3⋅
! 
∇ ∇2ψ3( ) + β

∂ψ3
∂x

= −
f0
δp
ω2  .      (9.8) 

 
here we have used the fact that ω0=0 and assumed that ω4=0. 
 We next write the thermodynamic energy equation (9.5) at level 2. Here we must 
evaluate ∂ψ/∂p using the approximate formula 
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€ 

∂ψ
∂p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2
≈
ψ3 −ψ1
δp

 .         (9.9) 

 
This yields 
 

  

€ 

∂
∂t

ψ1 −ψ3( ) = −
! v 2 ⋅
! 
∇ ψ1 −ψ3( ) +

σδp
f0

ω2 .      (9.10) 

 
The first term on the r.h.s. in (9.10) represents advection of the 250-750 hPa thickness by the 
wind at 500 hPa. However, the 500 hPa streamfunction, ψ2, is not a predicted field in this 
model. Therefore, ψ2 must be obtained by linearly interpolating between 250 hPa and 750 hPa 
as follows: 
 

€ 

ψ2 ≈
ψ1 −ψ3( )
2

 .          (9.11) 

 
If this formula is used, (9.7), (9.8) and (9.10) become a closed set of prediction equations in 
the variables ψ1, ψ3 and ω2. 
 
 
9.3 Linear analysis: Rossby waves and baroclinic instability 
 
In order to simplify the analysis as much as possible we assume that the streamfunctions, ψ1 
and ψ3, can be expressed as follows 
 

€ 

ψ1 = −U1y +ψ1' x,y,t( ), 

€ 

ψ3 = −U3y +ψ3' x,y,t( ) ,         (9.12) 

€ 

ω2 ≈ω2' x,y,t( ) . 
 
The “background” geostrophic zonal velocities at levels 1 and 3 are constants with the values 
U1 and U3, respectively.  
 Substituting (9.12) into (9.7-8) and (9.10) and linearising yields the perturbation 
equations, 
 

€ 

∂

∂t
+U1

∂

∂x
⎛ 
⎝ 

⎞ 
⎠ 
∇ h

2
ψ '1+β

∂ψ '1
∂x

=
f0
δp
ω '2 ,        (9.13) 

€ 

∂

∂t
+U 3

∂

∂x
⎛ 
⎝ 

⎞ 
⎠ 
∇h

2
ψ '3+β

∂ψ '3
∂x

=
− f0
δp

ω '2 ,         (9.14) 

€ 

∂
∂t

+Um
∂
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ψ '1−ψ '3( ) −UT

∂
∂x

ψ'1+ψ'3( ) =
σδp
f0

ω'2 ,     (9.15) 

 
with 
 

€ 

∇ h
2
≡
∂2

∂x2
+
∂2

∂y2
. 
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We have linearly interpolated to express v2 in terms of ψ1 and ψ3, i.e. 
 

€ 

v2 = v'2 =
1
2
v'1+v'3( ) =

1
2
∂
∂x

ψ '1+ψ '3( ), 

 
and we have defined 
 

€ 

UM ≡
U1 +U3( )

2
 and UT ≡

U1 −U3( )
2

 .       (9.16) 

 
Thus, UM and UT are respectively, the vertically averaged zonal wind and the mean thermal 
wind for the interval between levels 1 and 3. 
 The dynamical properties of this system are more clearly expressed if (9.13-15) are 
combined to eliminate ω2'. First we write (9.13) and (9.14) as 
 

€ 

∂
∂t

+ UM +UT( ) ∂
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∇h
2ψ1'+β

∂ψ1'
∂x

=
f0
δp
ω2'  ,     (9.17) 

 

€ 

∂
∂t

+ UM −UT( ) ∂
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∇h
2ψ3'+β

∂ψ3'
∂x

= −
f0
δp
ω2'   ,     (9.18) 

 
We now define the barotropic and baroclinic perturbations as  
 

€ 

ψM ≡
ψ1 +ψ3( )

2
 and ψT ≡

ψ1 −ψ3( )
2

 .       (9.19) 

 
Adding (9.17) and (9.18) and using the definition in (9.19) yields 
 

€ 

∂
∂t

+UM
∂
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∇h
2ψM + β

∂ψM
∂x

+UT
∂
∂x
∇h
2ψT = 0   ,    (9.20) 

 
whereas subtracting (9.18) from (9.17) and combining with (9.15) to eliminate ω2' yields 
 

€ 

∂
∂t

+UM
∂
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∇h

2ψT − 2λ2ψT( ) + β
∂ψT
∂x

+UT
∂
∂x

∇h
2ψM + 2λ2ψM( ) = 0   (9.21) 

 
where  
 

€ 

λ2 ≡
f0
2

σ δp( )2
 .           (9.22) 

 
is the inverse of the Rossby radius of deformation within the context of this model. 
Equations (9.20) and (9.21) govern the evolution of the barotropic (vertically averaged) and 
baroclinic (thermal) perturbation vorticities, respectively. 
 We assume that wavelike solutions exist of the form 
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€ 

ψM = Aexp i lx +my −ωt( )[ ] ; ψT = Bexp i lx +my −ωt( )[ ] .     (9.23)  
 
 Substituting these solutions into (9.20) and (9.21) we obtain a pair of simultaneous linear 
algebraic equations for the coefficients A and B: 
 

€ 

cx −UM( )k2 + β[ ]A −UT k2B = 0  ,       (9.24) 

€ 

UT k2 − 2λ2( )A − cx −UM( ) k2 + 2λ2( ) + β
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ B = 0  ,     (9.25) 

where 
 

€ 

k2 ≡ l2 + m2 and cx ≡ ω / l. 
 
Non-trivial solutions will exist only if the determinant of the coefficients of A and B is zero. 
Thus the phase speed c must satisfy the condition 
 

€ 

k2 k2 + 2λ2( ) cx −UM( )2 + 2β k2 + λ2( ) cx −UM( ) + β2 −UT
2k2 k2 − 2λ2( )⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ = 0 ,  (9.26) 

 
The dispersion relation (9.26) yields for the phase speed 
 

€ 

cx =UM −
β k2 + λ2( )
k2 k2 + 2λ2( )

± δ  ,        (9.27) 

 
where 
 

€ 

δ ≡
β2λ4

k4 k2 + 2λ2( )2
−
UT
2 2λ2 − k2( )
k2 + 2λ2( )

 ,       (9.28) 

 
Although (9.27) appears to be rather complicated, it is immediately apparent that, if δ<0, the 
phase speed will have an imaginary part and perturbations will amplify exponentially. 
 Let us consider the special case, β=0. In this case 
 

€ 

cx =UM ±UT
k2 − 2λ2

k2 + 2λ2
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/2

.        (9.29) 

 
For waves with zonal wave numbers satisfying k2<2λ2, (9.29) has an imaginary part. 
Therefore, all waves with wavelengths greater than the critical wavelength Lc = 2π/λ  will 
amplify.  The growth rate of this amplification is equal to (iω). From the definition of λ  
(9.22) we can write 
 

€ 

Lc =
π 2σ( )1/2δp

f0
 .         (9.30) 
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For typical tropospheric conditions, 2σ 1/2≈2×10-3 N-1m3s-1.  Therefore, with δp=50000 Pa 
and f0=10-4 s-1 we find that Lc=3000 km, which is the typical wavelength in longitudinal 
direction of observed synoptic disturbances. Eq. 9.30 also reveals that the critical wavelength 
for baroclinic instability increases with the static stability. 
 Let us now consider the special case, UT=0. In this so-called barotropic case (9.58) 
reduces to either 
 

€ 

cx =UM −
β

k2
           (9.31a) 

 
or 
 

€ 

cx =UM −
β

k2 + 2λ2( )
          (9.31b) 

 
With a barotropic basic state current, UM, the two-level model possessses two free (normal 
mode) small amplitude solutions, which represent oscillations or waves, which exist due to 
the β−effect. These waves are termed Rossby waves (see also section 1.37 and problem 5.4 in 
section 5.3). According to (9.31) the phase of Rossby waves propagates in westerly direction 
relative to the basic barotropic current. Rossby waves can be identified with the troughs and 
ridges that are characteristic of upper air charts of the geopotential height at, for instance 500 
hPa (figure 1.112). 
 It is important to note that if we set β=0 and UT=0 in eq. 9.28, we find that the system 
does not support waves. This implies that acoustic waves, gravity waves and inertial waves 
have been filtered out as a solution by making the hydrostatic approximation and the quasi-
geostrophic approximation. Indeed, the principal reason for developing quasi-geostrophic 
theory in the 1940's was to find a system of equations, which could be integrated numerically 
without too much computational expense, while still retaining as much of the 
meteorologically interesting phenomena as possible. Meteorologically the most important and 
interesting waves are the Rossby waves. Sound waves (chapter 3) are less interesting, 
because they do not play a role in the formation of precipitation systems. Because of their 
high phase velocity and high frequency, sound waves represent a significant computational 
burden, if they are included in the numerical solution. Buoyancy waves (chapter 3) require a 
high spatial resolution and therefore also form a significant computational burden, while only 
having a significant influence on the large-scale flow through the buoyancy- or gravity wave 
drag effect, which is discussed in section 3.5. 
 In the general case, where all terms in (9.58) are retained, the stability criterion is most 
easily understood by computing the neutral curve, which connects all values of UT and k for 
which δ=0, so that the flow is marginally stable. The condition δ=0 implies that  
 

€ 

β2λ4

k4 k2 + 2λ2( )
=UT

2 2λ2 − k2( ),        (9.32) 

 
This complicated relationship between UT and k can best be displayed in a graph by solving 
(9.32) for k4/2λ4, yielding   
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FIGURE 9.2. Neutral stability curve for the two-level baroclinic model. Source of this figure: Holton 
(2004) (see the list of references at the end of this chapter). 
 
 

€ 

k4

2λ4
=1± 1− β2

4λ4UT
2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/2

. 

 
This equation is displayed graphically in figure 9.2. The nondimensional quantity k2/2λ2 is 
plotted along the horizontal axis. The nondimensional parameter 2λ2UT/β  is plotted along the 
vertical axis. The latter parameter is proportional to the thermal wind or meridional basic state 
temperature gradient. Baroclinic waves are always stable if the quantity, 
k2/(2λ2)=2π2σ(δp)2/(Lx

2f0
2)>1, or if 

 

€ 

AR ≡
Lx
2δp

<
π σ
2 f0

.   (9.33) 

 
On the right hand side of this inequality we recognize a quantity that could be identified as the 
Rossby ratio, following the ideas of section 1.44. Popagating baroclinic Rossby waves are 
accompanied by a secondary vertical circulation (section 1.44). If this circulation has an 
aspect ratio smaller than the Rossby ratio, the amplitude of the wave will not grow due to 
baroclinic instability.  
 The neutral curve in figure 9.2 separates the unstable region in the UT - k plane from the 
stable region. The inclusion of the β-effect serves to stabilize the flow, because now unstable 
roots exist only for |UT|>β/(2λ2). In addition, the minimum value of UT required for unstable 
growth depends strongly on k. Thus, the β−effect stabilizes the long-wave end of the wave 
spectrum. Again, the flow is always stable for waves shorter than the critical wavelength, 
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€ 

Lc = π 2 /λ . By differentiating (9.32) with respect to k and setting dUT/dk=0, we find that 
the minimum value of UT for which unstable waves may exist, occurs when k2= 2λ2. This 
wave number corresponds to the wave, which becomes unstable for the lowest value of the 
thermal wind. Observed gowing waves should have a wave number that lies close to this 
wave number of "maximum instability", because, if UT were gradually raised from zero, 
the flow would first become unstable for perturbations of wave number k=21/4λ. These 
perturbations would then amplify and in the process remove energy from the mean thermal 
wind, thereby decreasing UT and stabilizing the flow. Under normal conditions of static 
stability, the theoretical wavelength of maximum instability is approximately 4000 km, which 
is of similar order of magnitude as the wavelength of growing midlatitude baroclinic waves.  
 The thermal wind required for marginal stability at the wavelength of maximum 
instability is about UT≈4 m/s, which implies a shear of 8 m/s between 250 and 750 hPa. 
Comparing this with the example, which is discussed in section 9.2, we find1 that the mean 
zonal wind speed on March 3, 1995 at 00 UTC within the trough or core of the jetstreak is 16 
m/s at 750 hPa, and 24 m/s at 250 hPa, implying a shear of 8 m/s between these levels, which 
perhaps by fortune is exactly the value for marginal instability quoted above. This verifies the 
hypothesis that the growth of the baroclinic Rossby waves originates from “small 
perturbations” of a baroclinically unstable basic current.  
 It is, however, doubtful whether this is really the case. Numerical weather prediction 
models generally predict cyclogenesis with a surprising degree of accuracy many days in 
advance. If the time and location of cyclogenesis were really dependent on the time and 
location of a random infinitesimal perturbation, the performance of numerical weather 
prediction models would be very much worse than it actually is.  
 It is very likely that cyclogenesis requires finite amplitude (relatively intense) 
perturbations. These perturbations are in fact frequently observable as a potential vorticity 
anomaly. Therefore, we must not interpret the theory of baroclinic instability too literally, but 
more as giving valuable information about the processes causing cyclogenesis and the 
connection between the preferred length-scales associated with these processes and the 
constraints imposed on the atmosphere.  
 
 
9.4 Vertical motion in small-amplitude baroclinic waves 
 
The basic physics of a linear baroclinic wave and linear baroclinic instability can be distilled 
from the analysis presented in the previous section by using the omega equation, which is 
derived in section 1.43. The omega equation (eq. 1.359) is repeated here: 
 

  

€ 

∇2ω +
f0
2p

RSp

∂2ω

∂p2
= −

2
Sp

! 
∇ ⋅
! 
Q g         (9.34) 

 
where the Q-vectors are defined as (see eq. 1.361): 
 

  

€ 

! 
Q g ≡ Qg1,Qg2( ) = −

∂
! v g
∂x

⋅
! 
∇ T,

∂
! v g
∂y

⋅
! 
∇ T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟        (9.35a) 

 
                                                

1 See the sounding made at Brest and Camborne (http://weather.uwyo.edu/upperair/sounding.html). 
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which can be written as, 
 

€ 

Qg1 = −
∂ug
∂x

∂T
∂x

+
∂vg
∂x

∂T
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ; Qg2 = −

∂ug
∂y

∂T
∂x

+
∂vg
∂y

∂T
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  .     (9.35b) 

 
 The Q-vector, linearised around a basic state baroclinic homogeneous zonal current, as 
defined in (9.12), becomes (using ∂ug/∂x+∂vg/∂y=0), 
 

€ 

Qg1,Qg2( ) = −
∂vg
∂x

∂T
∂y
,+
∂ug
∂x

∂T
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≈ -

∂vg
∂x

∂T
∂y
.      (9.36) 

 
In the Northern Hemisphere ∂T/∂y<0, while in a trough of a Rossby wave we have ∂vg/∂x>0. 
Therefore, the Q-vector points in eastward direction in a trough and in westward direction in 
the ridge, where ∂vg/∂x<0. In the ridge we have ∂vg/∂x<0, which implies that the Q-vector 
points in westward direction. Neglecting, for simplicity, the accelerations and decelerations of 
the zonal current, we see that the Q-vector converges to the east of the trough and diverges to 
the west of the trough, which, according to the omega equation (9.34), implies upward motion 
to the east of the trough and downward motion to the west of the trough. 
 The most important frontogenetic effect, which is left in this linear analysis, is the effect 
of the rotation of the isotherms due to the shear term ∂vg/∂x∂T/∂y. This effect turns the 
isotherms from the longitudinal direction into the meridional direction. Because the 
atmosphere is constrained (in the theory) to remain in thermal wind balance, this requires a 
simultaneous turning of the thermal wind (the direction of the thermal wind vector always 
paprallel to the isotherms). According to eq. 1.356, which is repeated here as eq. 9.37: 
 

€ 

f0
2p
R

∂ua
∂p

− Sp
∂ω
∂x

= 2Qg1 ≡
dg
dt

∂T
∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≈ −2

∂vg
∂x

∂T
∂y

 ,     (9.37) 

 
this adjustment to thermal wind balance is taken care of by an ageostrophic “circulation”, (ua, 
ω), in the x-p plane.  
 Within the framework of the two-level quasi-geostrophic model the upward motion east of 
the trough and west of the ridge is attended with an increase of the geostrophic relative 
vorticity, which is approximately equal to vg/∂x, at levels below 500 hPa, due to mass 
convergence. This will, in turn, enhance the frontogenetic effect of the shear term ∂vg/∂x∂T/∂y 
and thus induce a positive feedback, i.e. instability. However, the frontogenetic effect of the 
ageostrophic circulation, which is proportional to ∂ω/∂x∂T/∂p, may counteract this feedback 
effect. The linear stability analysis of the balanced zonal current section, given in the previous 
section, indicates that this feedback is unstable when the meridional temperature gradient and 
associated vertical shear of the geostrophic wind (the thermal wind) exceeds a certain 
threshold value and when the waves have wave lengths in the oreder of several thousand km.  
 Let us apply the omega equation to level 2 in the two-level model (figure 9.1). The Qg-
vector for the two-level model can be derived simply from (9.29). We first estimate the 
second term on the left hand side by finite differencing in p. Using (9.6), we obtain 
 

€ 

∂2ω

∂p2
≈

∂ω
∂p
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
3
−
∂ω
∂p
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
1

δp
≈ −

2ω2
δp( )2

 ,       (9.38) 
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With eq. 1 in Box 9.1 we have 
 

€ 

T = −
p
R
∂Φ
∂p

= −
f0p
R

∂ψ
∂p

  (9.39) 

 
Applying this to level 2 of the two-level model we obtain 
 

€ 

T2 =
f0
R

ψ1 −ψ3( ) .    (9.40) 

 
Thus, the omega equation (9.34), applied to model level 2, becomes 
 

  

€ 

σ ∇2 − 2λ2( )ω2 = −
2R
p
! 
∇ 
! 
Q g  ,        (9.41) 

 
Substituting (9.40) in (9.36), using (9.12) and (9.16), we obtain 
 

€ 

∂2

∂x2
+
∂2

∂y2
− 2λ2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ω2'= −

4 f0
σδp

UT
∂
∂x

∂v2'
∂x

= −
4 f0
σδp

UT
∂ζ2'
∂x

 .    (9.42) 

 
Observing that 
 

€ 

∂2

∂x2
+
∂2

∂y2
− 2λ2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ω2'∝ −ω2'  ,        (9.43) 

 
we may write eq. 9.42, very shortly, as follows. 
 

€ 

w2'∝ −ω2'∝ −UT
∂ζ2'
∂x

 .         (9.44) 

 
Thus, sinking (rising) motion is associated with (or "induced" by) negative (positive) 
advection of disturbance vorticity by the basic state thermal wind.  
 Figure 9.3 displays the schematic structure of a baroclinic wave at 500 hPa (level 2 in the 
two layer model). Vertical motion is due to frontogenesis associated with the rotation of the 
isotherms. This rotation and the accompanying Q-vector is of opposite sign in the trough 
compared to in the ridge. In the trough the Q-vector points eastwards, while in the ridge it 
points westwards. This leads to Q-vector divergence to the west of the trough and Q-vector 
convergence to the east of the trough. Convergence of the Qg-vector is associated with 
upward motion. The upward motion is observed to the east of the trough in the region of 
warm air advection. If the warm air travels upward and poleward, as shown by the solid arrow 
in figure 9.4, it replaces colder air. This is required for further growth of the wave. However, 
if warm air parcels travel poleward and upward, as shown by the dashed arrow in figure 9.4, 
it replaces warmer air. This implies a cooling of the warm sector of the wave, which does not 
reduce the potential energy of the background state, and hence is not conducive for further 
growth of the amplitude of the baroclinic wave. 
 Another way of looking at the dynamics of this process is by assuming, as in eq. 9.23, that 
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€ 

ζ2 = Cexp i lx +my −ωt( )[ ]         (9.45) 
 
and substituting (9.45) assumption into eq. 9.44. We then find that the forcing of vertical 
motion by zonal advection of disturbance vorticity by the basic state thermal wind, UT, is 
proportional to the zonal wavenumber, l. Therefore the trajectories in the meridional plane 
will steepen with increasing zonal wavenumber, or decreasing zonal wavelength. In other 
words short waves will not grow by conversion of potential energy of the background state 
into kinetic energy of the disturbance. 
 
 

 
FIGURE 9.3. Structure of a baroclinic wave at midlevels (level 2 in the two-layer model, i.e. 500 hPa). 
The relative vorticity and the meridional velocity are shown as a function of longitude. The meridional 
velocity is 90° out of phase with the vorticity. See the text for further explanation. 
 

 
FIGURE 9.4. Illustration of mechanism of baroclinic instability (see text). 
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9.10 “PV-θ  viewpoint” of forcing of vertical motion 
 
Our qualitative knowledge of the characteristics of the solution of the PV-inversion equation 
for a steady PV-anomaly can provide illuminating insight into the relation between large-scale 
vertical motion and a propagating PV-anomaly. This is sometimes referred to as the “PV-θ 
viewpoint”. Consider a positive potential vorticity anomaly embedded in a westerly mean 
flow with linear shear in height. The associated cyclonic circulation and the attraction of the 
isentropes towards the centre of the anomaly are sketched in figure 9.5. Let us assume that 
the PV-anomaly is located at a particular discrete height, it is represented mathematically by 
positive δ-function. If the coordinate system is such that the mean flow is zero at this level, 
then the circulation is a stationary solution of the equations of motion. Assuming adiabatic 
conditions, this implies that the isentropes do not move and that the air must flow among 
them. The air above the anomaly must flow down the isentrope to the west and up the 
isentrope to the east, as shown in figure 9.5a. Similarly, the air below the anomaly must flow 
up the isentropic surface to the east and down the isentropic surface to the west. Also, 
associated with the shear and thermal wind balance, isentropic surfaces must slope upwards 
towards the pole. Hence, as indicate in figure 9.5a, the poleward moving air to the east of the 
anomaly must ascend and the equatorward moving air to the west of the anomaly must 
descend. Therefore, the total “isentropic upglide” vertical motion is positive (ascent) to the 
east and negative (descent) to the west. 
 

	
FIGURE	9.5.	 Schematic	west-east	vertical	 sections	 illustrating	 the	effect	of	a	positive	potential	
vorticity δ-function	 superimposed	 on	 a	westerly	 flow	with	 a	 linear	 shear	 in	 height,	 z.	 Dashed	
lines	 represent	 isentropes.	 Horizontal	 and	 curved	 arrows	 sketch	 the	 horizontal	 circulation.	
Vertical	 pointing	 arrows	 indicate	 the	 vertical	 motion	 associated	 with	 isentropic	 upglide	
(continuous)	and	isentropic	displacement	(dashed).	As	viewed	in	a	frame	of	reference	in	which	
(a)	the	anomaly	appears	stationary	and	(b)	the	zonal	flow	on	the	lower	isentrope	is	zero,	so	that	
the	anomaly	appears	to	be	moving	from	the	 left	 to	the	right	(Hoskins,	B.J.,	M.	Pedder	and	D.W.	
Jones,	2003:	The	omega	equation	and	potential	vorticity.	Q.J.R.Meteorol.Soc.,	129,	3277-3303).	
 
 Suppose that the coordinate system is chosen such that the shear flow is zero in the 
neighbourhood of the lower isentrope (figure 9.5b). The components of the vertical motion 
associated with isentropic upglide in the meridional direction are unchanged. However, the 
westerly component now gives upglide vertical velocity at the lower isentrope, and larger 
values of isentropic upglide at the upper isentrope. Of course, the vertical motion is not 
dependent on the coordinate system. Therefore, there must be an additional part of the full 
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vertical motion associated with the translation of the potential vorticity anomaly in this 
coordinate system. We refer to this as the “isentropic displacement” vertical motion. As the 
PV-anomaly moves to the east the isentropes on the eastern side above the anomaly must 
move down and those below must move up (figure 9.5b). Similarly, on the western side the 
isentropes must return to their undisturbed level through ascent above and descent below. In 
this coordinate system it is the sum of the isentropic upglide and the isentropic displacement 
vertical motions that gives the same vertical motion as the isentropic upglide vertical motion 
in a frame of reference within which the translation of the anomaly appears stationary. 
 We have thus split the vertical motion into two components: the isentropic upglide 
associated with translation of air relative to PV-anomaly and the isentropic displacement 
associated with translation of a potential vorticity anomaly in a chosen reference frame and 
with its development (changing intensity). If the frame of reference is chosen such that the 
potential vorticity anomaly is stationary, the isentropic displacement vertical velocity is zero 
unless the potential vorticity anomaly is “developing” (changing intensity).  
 

 
 
FIGURE	 9.6.	 Topography	 of	 isentropic	 surfaces	 associated	 with	 eastward	 moving	 upper	 PV-
anomalies.	 The	 dark	 lines	 mark	 the	 intersection	 of	 the	 tropopause	 with	 the	 10	 km	 level,	
separating	 air	 of	 PV>	 2	 PVU	 to	 the	 north	 from	 air	 of	 PV<2	 PVU	 to	 the	 south.	 Shown	 also	 are	
system	relative	 isentropic	up-and	downgliding	 (arrows	directed	along θ-surfaces)	and	vertical	
motion	 due	 to	 induced	 bulging	 of	 the	 isentropic	 surface	 (vertical	 arrows)	when	 viewed	 from	
Earth-relative	perspective.	The	dashed	line	represents	a	fixed	latitude.	Figure	due	to	E.B.	Carroll	
(published	in	Meteorol.Apl.,	10	(2003),		p.	285.)	
 
 Figure 9.6 gives a three-dimensional view of what is meant by these concepts, where the 
potential vorticity anomaly pattern consists of a series of positive (associated with troughs in 
the northern hemisphere) and negative (associated with ridges in the northern hemisphere) 
anomalies embedded in a meridional potential vorticity gradient. The induced wind field is 
wavelike. There is upgliding meridional motion on the east side of the trough and 
downgliding meridional motion on the west side of the trough. The isentropic-displacement-
component of the vertical motion is associated with the west-east (zonal) propagation of the 
series of troughs and ridges and depends on the phase speed of this wavelike pattern relative 
to the actual zonal velocity component of the air parcels.  
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 Consider a frame of reference moving at some constant horizontal velocity (cx, cy). The 
potential temperature equation in this frame of reference is as follows. 
 

€ 

dθ
dt

=
∂θ
∂t

+ u − cx( ) ∂θ
∂x

+ v − cy( ) ∂θ∂y + w ∂θ
∂z

=
J
Π

     (9.46) 

 
If this equation is divided by ∂θ/∂z and taking into account that the slope of the isentrope in, 
for instance, the x-direction is 
 

€ 

∂zθ
∂x

= −
∂θ /∂x
∂θ /∂z

          (9.47) 

 
 (zθ is the height of the isentropic surface), the following equation for w is obtained. 
 

€ 

w =
∂zθ
∂t

+ u − cx( ) ∂zθ
∂x

+ v − cy( ) ∂zθ∂y +
J
Π

∂θ
∂z

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−1

     (9.48) 

 
The first term on the right hand side of eq. 9.48 is the isentropic displacement vertical 
motion. This term is interpreted physically as the “the vaccuum cleaner effect” of a PV-
anomaly as follows. In adiabatic conditions, air rises in advance of an approaching upper level 
positive PV-anomaly, while air sinks in the lee of a retreating positive PV-anomaly. 
Isentropic upglide/downglide vertical motion (the second and third term in eq. 9.108) may, 
however, counter the vaccuum cleaner effect. The fourth term in eq. 9.48 represents the 
contribution of heating or cooling to vertical motion. 
 
 
 
PROBLEM 9.1. Maximum growthrate of a baroclinic disturbance (taken from Holton, 
2004). 
Show, using eq. 9.29, that the maximum growth rate for baroclinic instability when β=0 
occurs for 
 
k 2  =  2λ2 2 -1  .  
 
How long does it take the most rapid growing wave to amplify by a factor of e if λ=2×10-6 m-
1 and UT=20 m s-1. 
 
PROBLEM 9.2. Phase tilt of a baroclinic disturbance (taken from Holton, 2004). 
For the case β=0 determine the phase difference between the 250 hPa and the 750 hPa 
geopotential fields for the most unstable baroclinic wave (see problem 9.1).  
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ABSTRACT OF CHAPTER 9 
 
Chapter 9 is concerned with the theory of mid-latitude baroclinic flow. The quasi-geostrophic 
approximation is used to formulate a two-layer model of the atmosphere in middle latitudes. 
The linear stability is analysed of a middle latitude zonal flow, in thermal wind balance, with 
a meridional temperature gradient, using the method of normal modes. The effect of the 
meridional variation of the Coriolis parameter (the beta-effect) is included. This analysis 
reveals the existence, in the two-level model, of so-called “barotropic and baroclinic 
Rossby waves”. The amplitude of baroclinic Rossby waves grows exponentially in time if (1) 
the vertical shear of the zonal wind exceeds a threshold value, (2) the zonal wavelength is 
larger than a critical value and, (3) the wave tilts westward with increasing height 
(problem 9.7). The instability of baroclinic Rossby waves is invoked as a theory of middle 
latitude cyclogenesis.  
 The pattern of vertical motion in a baroclinic Rossby wave, with upward motion east of the 
trough and downward motion west of the trough, is understood from two perspectives: (1) the 
“quasi-geostrophic viewpoint” (omega equation and Q-vectors) and (2) the so-called “PV-θ  
viewpoint”.  
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